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A TECKNIQUE FOR THRUST-VECTOR ORlENTATION DURING 

MANUAL CONTROL OF LUNAR UWINGS FROM 

A SYNCHRONOUS ORBIT 

By L. Keith Barker and M. J. Queijo 
Langley Research Center 

SUMMARY 

A n  ana ly t ica l  study has been made of the poss ib i l i t y  of using v isua l  re f -  
erences as an a id  i n  thrust-vector or ientat ion during lunar  landings. The pro- 
cedure w a s  t o  compute a gravity-turn descent, and then t o  examine the  th rus t -  
vector or ientat ion r e l a t i v e  t o  the  uprange horizon, t he  downrange horizon, the  
nominal landing s i t e ,  and an orb i t ing  spacecraft t o  determine whether some 
simple, useful  geometric re la t ionships  existed.  It w a s  found t h a t  during t h e  
gravi ty  tu rn  the angle between the  thrust  vector and the  l i n e  of sight t o  t h e  
orb i t ing  vehicle remained very near ly  constant u n t i l  the  landing w a s  almost 
completed. The orb i t ing  spacecraft therefore  appears t o  be a convenient re f -  
erence f o r  manual control  of the  lander th rus t  vector. 

Trajectory computations based on using the  l ine  of sight t o  an orb i t ing  
spacecraft f o r  thrust-vector or ien ta t ion  resul ted i n  e f f i c i en t  landings. The 
e f f ec t  of e r ro r s  i n  th rus t  direct ion,  t h rus t  magnitude, and i n i t i a l  condition 
of the  lander a t  i n i t i a t i o n  of the  braking maneuver on terminal condition a l s o  
w a s  examined. In  general, the  terminal conditions were r e l a t ive ly  insens i t ive  
t o  these e r rors .  The exceptions were the e f f ec t  of thrust-direct ion e r ro r  on 
terminal a l t i t u d e  and tangent ia l  veloci ty ,  and of thrust  l e v e l  on range. 

INTRODUCTION 

Manual procedures f o r  control l ing various phases of the lunar mission have 
been and are current ly  being examined a t  the  Langley Research Center. 
bibliography of ref. 1, f o r  example.) Such procedures could be used as backup 
modes f o r  the mission phases, o r  i f  simple and r e l i ab le ,  might be considered as 
primary control  modes. One of t he  more c r i t i c a l  phases of the  mission appears 
t o  be t h e  lunar  landing. This phase i s  c r i t i c a l  because it requires  a ra ther  
la rge  amount of f u e l  (or cha rac t e r i s t i c  veloci ty)  and therefore  must be per- 
formed very e f f i c i en t ly ,  and because of the s t r ingent  conditions that  must be 
met at touchdown. 

(See 



A simulator study of p i l o t  control  of t he  lunar landing reported i n  ref- 
erence 2 showed t h a t  with proper information displays,  t he  p i l o t  could make 
sa t i s fac tory  landings. The displays were i n  the  forms of various instruments 
and two p l o t t e r s  which presented useful  integrated information. Although the  
p i lo t ing  procedure used i n  reference 2 w a s  simple, the  display and sensor 
requirements t o  obtain the  displayed information would be very complex f o r  an 
ac tua l  spacecraft. It i s  desirable,  therefore,  t o  search f o r  landing proce- 
dures which require as l i t t l e  display information as possible,  and s t i l l  permit 
sa t i s fac tory  landings. The present invest igat ion i s  an ana ly t ica l  study of a 
procedure f o r  control  of t he  landing maneuver, and appears t o  o f f e r  a means of 
sa t i s fac tory  p i l o t  control.  

The primary control  function over most of the  landing run i s  the  proper 
or ientat ion of t h e  th rus t  vector f o r  braking. 
invest igat ion w a s  t o  examine the  or ientat ion of t he  th rus t  vector f o r  an eff i -  
c ient  landing maneuver ( spec i f ica l ly ,  a gravi ty  tu rn ) ,  and then t r y  t o  duplicate 
the  th rus t  or ientat ion by aiming the  thrust vector r e l a t ive  t o  avai lable  v isua l  
references. 

The procedure used i n  t h i s  
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v 

th rus t ,  l b  

grav i ta t iona l  accelerat ion a t  surface of ear th ,  32.2 f t / sec2  

gravi ta t iona l  acceleration at  surface of moon, 5.32 f t / s ec2  

a l t i t ude ,  f t  

spec i f ic  impulse, 305 sec 

angle between th rus t  vector and l i n e  of s ight  t o  a specified 
reference, deg 

m a s s ,  slugs 

r ad ia l  distance from center of moon, f t  

r ad ia l  ve loc i ty  component, f t / s e c  

r a d i a l  acceleration, f t  / sec2 

radius of moon, 5,7O2,OOO f t  

t i m e ,  sec 

t o t a l  velocity,  f t / s e c  
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AV cha rac t e r i s t i c  velocity,  Ispge log, , f t / s e c  
mg - fi t  

W ea r th  weight, mge, l b  

7 

0 angular t r a v e l  over lunar  surface, deg or  radians 

6 angular r a t e ,  radians/sec 

0 

U thrust  a t t i t u d e  with respect t o  l o c a l  horizontal ,  pos i t ive  when 

vehicle f l ight-path angle, deg ( f i g .  l ( b ) )  

.. 
angular acceleration, radians / se c2 

th rus t  i s  directed upward, deg ( f i g .  l ( b ) )  

0" angular separation of lunar  excursion and orb i t ing  modules, measured 
with ver tex a t  moon's center, deg 

R range of t r a v e l  over lunar  surface, f t  

Subscripts : 

0 

t 

S 

DR 

UR 

LS 

B 

i n i t i a l  value (at landing i n i t i a t i o n )  

r e f e r s  t o  conditions at  end of landing t r a j ec to ry  

r e f e r s  t o  orb i t ing  command and service modules 

downrange 

uprange 

landing s i t e  

b i sec tor  

Dots over symbol indicate  der ivat ives  with respect t o  time. 

ANALYSIS 

The landing maneuver studied i n  the present invest igat ion i s  i l l u s t r a t e d  
i n  f igure  l (a )  and i s  one of the  maneuvers present ly  contemplated f o r  the  Apollo 
lunar  landing mission. The spacecraft ,  consis t ing of an excursion module, a 
command module, and a service module es tab l i shes  an 80-nautical-mile-altitude 
c i r cu la r  o rb f t  around the  moon. A t  the  appropriate time t h e  excursion module 
separates from the  spacecraft  and es tab l i shes  an e l l i p t i c  o rb i t  having a period 
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equal t o  t h a t  of t he  c i r c u l a r  o r b i t .  This i s  re fer red  t o  as a synchronous 
o r b i t .  The o r b i t  of the  excursion module has a pericynthion of 50,000 f e e t  
(point  of c loses t  approach t o  moon). 
o rb i t ,  t he  excursion module performs a braking maneuver and makes a landing. 
The primary cont ro l  function over most of t he  landing i s  proper or ien ta t ion  
of t h e  th rus t  vector f o r  t h e  braking maneuver. 
of ways; however, it i s  des i rab le  t o  make t h e  landing maneuver e f f i c i e n t  with 
regard t o  f u e l  usage. The purpose of the present study therefore  w a s  t o  search 
f o r  an e f f i c i e n t  landing maneuver which could be controlled manually by a p i l o t  
by using a minimum of information for thrust-vector or ien ta t ion .  

A t  t h e  pericynthion of t h e  e l l i p t i c  

This can be done i n  any number 

Equations of Motion 

The equations of motion used i n  the present study were f o r  a point m a s s  
moving i n  a cen t r a l  force f i e l d  and subject t o  a t h r u s t  force i n  the  plane of 
motion. The equations of motion used were: 

.ij + 2 3  = - E cos a 
m 

where 

and 

The thrust-vector or ien ta t ion  i s  defined by the  angle a; t h a t  i s ,  a i s  the  
angle between t h e  t h r u s t  vector and t h e  l o c a l  horizontal  ( f i g .  l ( b ) ) .  
t i o n s  of motion were solved on an e lec t ronic  d i g i t a l  computer. 

The equa- 

Reference Descent Trajectory 

A s  w a s  mentioned i n  the  Introduction, t he  approach used i n  t h i s  study w a s  
t o  s e l ec t  an e f f i c i e n t  landing t r a j ec to ry ,  examine i t s  th rus t  o r ien ta t ion ,  and 
determine whether t h e  t r a j e c t o r y  could be c lose ly  approximated by aiming the  
t h r u s t  vector r e l a t i v e  t o  some convenient reference. The reference descent 
t r a j e c t o r y  selected w a s  a gravity-turn descent, which by de f in i t i on  i s  a 



maneuver i n  which the  thrust i s  directed against  the  vehicle ve loc i ty  vector. 
I n  t h i s  case the  angle a of equations (1) and (2) i s  specified by 

a = tan-I($). 

RESULTS AND DISCUSSION 

The r e s u l t s  of this invest igat ion are presented i n  three  sections:  t he  
f i r s t  presents  the charac te r i s t ics  of t h e  gravity-turn reference t ra jec tory ;  
t he  second examines the or ien ta t ion  of the  gravity-turn th rus t  vector r e l a t ive  
t o  several  avai lable  references t o  determine whether convenient o r  useful  geo- 
metric re la t ionships  ex i s t ;  and the  t h i r d  se l ec t s  one pa r t i cu la r  reference and 
examines the  e f f e c t s  of various sighting e r ro r s  and var ia t ions  i n  i n i t i a l  con- 
d i t i ons  on the braking t r a j ec to ry .  A constant-thrust engine producing an 
i n i t i a l  thrust-earth-weight r a t i o  of 0.485 w a s  assumed i n  t h i s  investigation. 

Gravity-Turn Descent 

Some of the cha rac t e r i s t i c s  of the reference gravity-turn descent are  
shown i n  f igure  2. The braking maneuver i s  i n i t i a t e d  a t  an a l t i t u d e  of 
50,000 f e e t ,  which i s  the  pericynthion of the e l l i p t i c  t r a j ec to ry  with the same 
period as a c i r cu la r  o r b i t  having an 80-nautical-mile a l t i t ude .  
maneuver terminates with zero vehicle veloci ty  at an a l t i t u d e  of about 
5,400 fee t .  The da ta  of primary i n t e r e s t  with regard t o  this descent a r e  the  
thrust-vector or ien ta t ion  and the terminal conditions. If or ien ta t ion  of the 
th rus t  vector could be duplicated by aiming r e l a t i v e  t o  some convenient refer-  
ence, then the  gravity-turn t r a j ec to ry  would automatically be duplicated. The 
thrust-vector or ien ta t ion  a i s  the  negative of the  f l ight-path angle 7 
since i n  a gravi ty  tu rn  the  thrust i s  directed against  the vehicle ve loc i ty  
( o r  f l i g h t  path) .  
the f l igh t -pa th  angle i s  a l so  equal t o  the vehicle a t t i t u d e  r e l a t ive  t o  the  
l o c a l  horizontal .  Note t h a t  t h e  f l ight-path angle va r i e s  almost l i n e a r l y  with 
a l t i t u d e  over most of t he  braking maneuver. (See f ig .  2(a).)  A t  a l t i t u d e s  
below about 15,000 f e e t ,  however, the  f l ight-path angle var ies  rapidly i n  a 
nonlinear fashion. Therefore, even i f  t h e  l o c a l  horizontal  could be determined 
very accurately,  it does not appear t o  be a pa r t i cu la r ly  convenient reference 
f o r  manual control  of thrust-vector or ientat ion.  

The braking 

I f  the  th rus t  axis i s  f ixed r e l a t i v e  t o  the  vehicle,  then 

Orientation of Thrust Vector for Gravity Turn 

Relative t o  Various References 

This section i s  concerned with determining the  or ien ta t ion  of the  th rus t  
vector (during a gravi ty  turn)  r e l a t ive  t o  various references t o  determine 
whether there  e x i s t s  some reference such t h a t  the  angle between the th rus t  
vector (o r  body axes) and the  l i n e  of s ight  t o  that reference i s  a constant o r  

5 



var i e s  i n  some very simple ( l i nea r )  manner. 
were the  lunar horizons, the landing site, and the orb i t ing  vehicle.  

The various references examined 

Lunar horizon i n  d i rec t ion  o.f--mo-&ion. - The geometric re la t ionships  between 
the vehicle thrust  ax i s  and the downrange horizon are  shown i n  f igure  3. The 
angle between the  t h r u s t  vector and the l i n e  of s ight  t o  the downrange horizon 
i s  given by - 

o r  

KDR = COS-’ (rmrT h) a 

Figure 4 i s  a p lo t  of 
mately the same cha rac t e r i s t i c s  as shown f o r  7 i n  f igure  2(a) (-7 = a f o r  
grav i ty  tu rn ) .  T h i s  i s  t o  be expected since the  var ia t ion  of f+)R i s  small 
over the  landing range. Although the use of the horizon has i t s  drawback i n  
the  rapid var ia t ion  of 
more convenient reference than the l o c a l  horizontal  would. 

KDR as a f’unction of a l t i t ude .  The p lo t  shows approxi- 

KDR w i t h  a l t i t u d e  at low a l t i t udes ,  it does provide a 

Horizon i n  d i rec t ion  of thrust . -  The geometric re la t ionship  between the 
v e h i c i  i n  the d i rec t ion  of thrust (uprange) a r e  
shown i n  f igure  5. 
t o  the  horizon i s  given by 

The angle between the t h r u s t  vector and t h e . l i n e  of s ight  

o r  

Km = cosm1 (rmr: h) + a 

The var ia t ion  of Km with a l t i t u d e  f o r  the  gravity-turn descent i s  shown i n  
figure 6. I n  th i s  case also, the  angle Km var i e s  slowly and l i n e a r l y  w i t h  
a l t i t u d e  over most of the  landing range, but var ies  very rapidly at  a l t i t u d e s  
below about 15,000 f e e t  . 

Landing s i t e . -  The r a the r  la rge  var ia t ion  i n  angle between the  rocket 
t h rus t  vector and the horizons noted previously i s  associated with the la rge  
turning angle of the spacecraft  near the  lunar  surface. It appeared desirable  
t o  f ind  some reference aiming point which would tend t o  move more rapidly 
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toward the  spacecraft  during the  descent than does the  downrange horizon. The 
landing s i te  i s  such a reference; therefore  an examination w a s  made of the  
angle between the  l i n e  of s ight  t o  the  nominal landing point and the  th rus t  
vector fo r  a gravi ty  turn.  The geometric re la t ionships  involved are  shown i n  
figure 7. 
i n a l  landing point i s  given by 

The angle between the  th rus t  vector and the  l i n e  of s ight  t o  the  nom- 

r - rm cos BLs 
rm s i n  8Ls K~~ = -a + tan-1 

I n  t h i s  case the  angle remains r e l a t i v e l y  constant over a large pa r t  of t h e  
t ra jec tory ,  but var ies  very rapidly a t  low a l t i t udes .  
ever, t h a t  t he  th rus t  vector always points  above the  l i n e  of sight t o  the  
landing point. The thrus t  vector generally pointed below t h e  l i n e  of s ight  t o  
the  downrange horizon. Comparing f igures  4 and 8 indicates  a s imi l a r i t y  i n  
var ia t ion  of t h e  angles between the  t h r u s t  ax i s  and the  sighting references, 
with a difference i n  sign of t he  angles. One might then ask how the  th rus t  
vector w a s  oriented r e l a t ive  t o  the  b isec tor  of t he  angle between the  l i n e s  of 
s ight  t o  t h e  horizon and t o  the  landing s i t e .  This var ia t ion i s  shown i n  f ig -  
ure 9 and shows t h a t  f o r  t h e  nominal gravi ty  turn,  t he  th rus t  vector pointed 
from about 2- t o  go above the  bisector  of the  angle between the  l i n e s  of 

2 
s ight  t o  the  downrange lunar horizon and t o  the  landing s i t e .  It appears t h a t  
a reasonably good approximation of the  gravi ty  turn  could be made by holding a 
constant angle of about 5' between the  th rus t  vector and the  angle b isec tor  
specified above. However, it does appear somewhat awkward t o  a i m  the th rus t  
vector i n  t h i s  manner. 

(See f i g .  8.) Note how- 

lo 

Orbiting spacecraft.- The angle between the  t h r u s t  vector,  i n  the  gravi ty  
t u r n , a n d - t h e  l i n e  of s ight  t o  the modules remaining i n  the  80-nautical-mile- 
a l t i t u d e  parking o r b i t  can be determined from the geometric re la t ionships  shown 
i n  f igure  10. The var ia t ion  of t h i s  angle throughout t he  landing maneuver i s  
shown i n  f igure  11 as a function of a l t i t ude .  Note t h a t  from the  point o f  
t h r u s t  i n i t i a t i o n  ( h  = 50,000 f e e t )  down t o  an a l t i t u d e  of about 7,500 f e e t ,  
t he  angle remained at about 23.75O i- lo. Also note t h a t  at  an a l t i t u d e  of 
7,wO f e e t  t he  vehicle ve loc i ty  i s  about 450 feet per  second. (See f i g .  2(b) . )  
It appears, therefore,  t h a t  i f  t he  lander th rus t  vector i s  oriented t o  point at  
approximately 23O or  24' behind the  orb i t ing  spacecraft ,  it w i l l  very closely 
duplicate a gravity-turn descent. 

The Orbiting Spacecraft as a Thrust-Direction Reference 

The results of the  previous section indicated t h a t  the  gravity-turn 
descent could be approximated by maintaining t h e  th rus t  vector a t  a constant 
angle behind the  orb i t ing  modules. T h i s  section i s  concerned w i t h  the  compar- 
ison of the  cha rac t e r i s t i c  veloci ty  AV (a measure of f u e l  consumption) and 
terminal conditions obtained by maintaining a constant-thrust-angle bearing, 
with t h e  corresponding results f o r  a gravi ty  turn.  The terminal conditions and 
AV f o r  t he  grav i ty  turn  were as follows: 
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r6 = o 

It should be notedsthat f o r  a nongravity-turn landing, t he  two veloci ty  com- 
ponents r and r e  w i l l  not be nulled simultaneously; therefore there  could 
be some question regarding t h e  specif icat ion of terminal condition. For the 
purpose of this study, t h e  term "terminal condition" indicates  t h a t  one of the  
ve loc i ty  components has been nulled.  

The angle a which i s  used i n  equations (1) and ( 2 )  when thrus t  i s  
applied at  a fixed bearing r e l a t ive  t o  the  orbi t ing module i s  given by 

s in  e* 
- %  

where 

The t i m e  t and angular t r a v e l  0 are  measured from i n i t i a t i o n  of t he  powered 
descent (pericynthion), and 
excursion and orb i t ing  modules. 

(e*), i s  the  i n i t i a l  separation angle of  t h e  lunar 

Several landing t r a j e c t o r i e s  were computed f o r  a range of values of the  
angle Ks. 
23O behind the  orb i t ing  spacecraft - t h a t  i s ,  
t i o n s  f o r  this landing maneuver a re  compared w i t h  those of the  grav i ty  tu rn  i n  
t h e  following table : 

A close approximation t o  a gravi ty  turn  w a s  obtained by thrus t ing  
The terminal condi- K s  = 23'. 



Condition 

r r  r e  
h 
R 
AV 

Terminal condition f o r  - 
Gravity tu rn  I KS = 23' 

I 
I t 

0 
0 

857,158 
5,466 

5,870 

-15.2 
0 

4,748 
858,073 
5 , 850 

I I 

Some of t he  t r a j ec to ry  parameters of the  % = 23' t r a j ec to ry  are com- 
pared with those of t he  gravity-turn t r a j ec to ry  i n  f igure  12. 
t h a t  t he  t r a j ec to ry  charac te r i s t ics  are nearly ident ica l .  
t h a t  using the  orb i t ing  spacecraft as an aiming reference would be convenient 
f o r  manual control of t he  landing maneuver. It i s  necessary, however, t o  
examine the  accuracy w i t h  which the  aiming angle must be held and the sensi- 
t i v i t y  of the  procedure t o  various possible errors .  

The results show 
It appears therefore  

Error Analysis fo r  Constant Line-of-Sight 

Thrust-Vector Control 

The e r ro r  analysis  consisted of determining the  change i n  terminal condi- 
t i o n s  caused by departures from the  nominal i n i t i a l  conditions, thrust-vector 
or ientat ion,  and th rus t  level .  The i n i t i a l  conditions referred t o  here are the  
conditions ex is t ing  at the  time the  powered braking descent i s  in i t i a t ed .  
These conditions can be re la ted  t o  e r ro r s  i n  any portion of the  coasting e l l i p -  
t i c  o rb i t  through t h e  standard o r b i t a l  mechanics equations. 

Thrust-vector direct ion.-  The var ia t ions  i n  terminal conditions with 
change i n  thrus t  d i rec t ion  are shown i n  f igure  13. A s  noted previously, 
"terminal conditions" are defined as conditicns ex is t ing  at the  t i m e  when one 
of t he  vehicle veloci ty  components (? o r  r e )  i s  nulled. The r e su l t s  of f i g -  
ure 13 show the following points  of i n t e r e s t :  

( a )  The range covered during t h e  braking maneuver and the  t i m e  required 
t o  a t t a i n  terminal conditions are r a the r  insens i t ive  t o  thrust-vector d i rec t ion  
e r ro r s  of reasonable magnitude (about 22'). 

(b) "he terminal a l t i t u d e  and ve loc i ty  vary approximately l i n e a r l y  with 
th rus t  direct ion.  

The sharp discont inui ty  i n  the  ve loc i ty  curve which occurs a t  % = 22.8' 
i s  associated with the f a c t  that fo r  less than 22.8', t h e  r a d i a l  component 
i s  reduced t o  zero and the tangent ia l  veloci ty  r6 has some magnitude. Values 
of KS greater  than 22.8O cause the  tangent ia l  component t o  be reduced t o  zero 
and the  r a d i a l  ve loc i ty  has a f i n i t e  value. 

K& 
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The a l t i t u d e  s e n s i t i v i t y  t o  % i s  about 11,000 feet  per degree i n  %, 
t he  tangent ia l  ve loc i ty  s e n s i t i v i t y  i s  about 212 f e e t  per  second per degree 
KS' 

Thrust-vector-orientation e r ro r s  could or ig ina te  from two sources: 
the i n a b i l i t y  of t h e  p i l o t  t o  maintain the  desired th rus t  direct ion,  and 
the  th rus t  vector not being al ined with t h e  body reference axis. I n  t h e  - 

former case the  aiming e r r o r  during descent should be a var iable  quant i ty  and 
may average out close t o  zero. I n  t h e  l a t te r  case the  terminal conditions 
could become unacceptable i f  the  sighting angle w a s  maintained during the  
e n t i r e  braking maneuver. During an ac tua l  landing maneuver, however, t he  p i l o t  
should be able  t o  observe departures from the  nominal conditions near t h e  end 
of the  braking maneuver and should be able  t o  compensate f o r  them. For example, 
t h e  nominal terminal conditions w i l l  probably include low a l t i t u d e  and low 
ve loc i ty  components. The p i l o t  should be able t o  judge these quant i t ies  reason- 
ably w e l l  by out-of-the-window observations, such as i s  done by airplane p i l o t s .  
Fl ight  simulations a re  needed t o  determine how well  a p i l o t  can perform the  
technique. 

Thrust level . -  The sens i t i v i ty  of terminal conditions on th rus t  l e v e l  
(or  F/Wo) i s  shown i n  f igure  14. The curves show t h a t  terminal a l t i t ude ,  
velocity,  and range a l l  vary almost l i nea r ly  with th rus t  level .  It appears, 
however, t h a t  t h rus t  l e v e l  e r ro r s  of kl or  2 percent would not be serious,  
except possibly i n  range e r ror .  
mately 10,000 f e e t  f o r  each percent e r r o r  i n  th rus t  level .  

The terminal range sens i t i v i ty  i s  approxi- 

I n i t i a l  a l t i tude . -  The var ia t ions  of terminal conditions with change i n  
i n i t i a l  a l t i t u d e  are shown i n  f igure  15. Here again t h e  var ia t ions are approx- 
imately l inear .  
u l a r l y  sensi t ive t o  i n i t i a l  a l t i t u d e  e r rors .  
d i t i o n  appears t o  be the  a l t i t ude ,  and here the  terminal a l t i t u d e  e r ro r  i s  
about one-half of the i n i t i a l  a l t i t u d e  error .  

The curves indicate  t h a t  terminal conditions are not pa r t i c -  
The most sensi t ive terminal con- 

I n i t i a l  rate of descent.- The nominal powered descent i s  i n i t i a t e d  a t  t h e  
o r b i t  pericynthion with zero rate of descent. The s e n s i t i v i t y  of terminal con- 
d i t i ons  t o  var ia t ion  i n  i n i t i a l  r a t e  of descent i s  shown i n  f igure  16. 
apparent t h a t  t he  terminal conditions are not very sens i t ive  t o  i n i t i a l  rate of 
descent, i f  t h e  i n i t i a l  rates are of reasonable magnitude (*lo f t / s e c ) .  

It i s  

I n i t i a l  t angent ia l  velocity.-  The s e n s i t i v i t y  of terminal conditions t o  
i n i t i a l  e r ro r s  i n  tangent ia l  ve loc i ty  i s  shown in  f igure  17. 
e r ro r s  even as high as *lo0 f t / s e c  i n  i n i t i a l  t angent ia l  veloci ty  do not seri- 
ously alter t h e  terminal conditions. 

It appears t h a t  

CONCLUDING REMARKS 

An ana ly t ica l  study has been made 6f the  p o s s i b i l i t y  of using v i sua l  ref- 
erences as an a i d  i n  thrust-vector or ien ta t ion  during lunar landings. The 
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procedure w a s  t o  compute a gravity-turn descent, and then t o  examine the  thrus t -  
vector or ien ta t ion  r e l a t ive  t o  the  uprange horizon, t h e  downrange horizon, t he  
nominal landing si te,  and an orb i t ing  spacecraft t o  determine whether some 
simple, useful  geometric re la t ionships  existed.  It w a s  found t h a t  during the  
grav i ty  turn the  angle between the  th rus t  vector  and the  l i n e  of  s ight  t o  the  
orb i t ing  vehicle  remained very near ly  constant u n t i l  t h e  landing w a s  almost 
completed. The orb i t ing  spacecraft  therefore  appears t o  be a convenient ref- 
erence f o r  manual control  of the lander th rus t  vector.  

Trajectory computations based on using the  l i n e  of sight t o  an orb i t ing  
spacecraft  f o r  thrust-vector or ien ta t ion  resu l ted  i n  e f f i c i en t  landings. The 
e f f e c t  of e r r o r s  i n  thrust direct ion,  t h rus t  magnitude, and i n i t i a l  condition 
of t h e  lander at  i n i t i a t i o n  of t h e  braking maneuver on terminal condition a l so  
w a s  examined. I n  general, t he  terminal conditions w e r e  r e l a t ive ly  insens i t ive  
t o  these e r rors .  The exceptions were t h e  e f f ec t  of thrust-direct ion e r r o r  on 
terminal a l t i t u d e  and tangent ia l  veloci ty ,  and of t h r u s t  l e v e l  on range. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va . ,  February 4, 1964. 
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(a) Mission phases. 

Figure 1.- Illustration of orbits and landing trajectory at the moon. 
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(b) Details of powered descent. 

Figure 1.- Concluded. 



A l t i t u d e , h , f t  

( a )  Variation of f l i gh t -pa th  angle with a l t i t u d e .  
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(b) Variation of ve loc i ty  with a l t i t u d e .  

Figure 2.- Charac t e r i s t i c s  of t he  reference gravity-turn braking descent. 



T i m e , t , s e c  

(c)  Variation of a l t i t u d e  with time. 
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(a)  Variation of a l t i t u d e  w i t h  range. 

Figure 2.- Concluded. 
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Figure 3 . -  Geometric r e l a t i o n s h i p  between vehic le  t h r u s t  axis and t h e  downrange horizon. 



Figure 4.- Variation of t h e  angle between the thrus t  vector and the l i n e  of sight t o  the downrange horizon 
with a l t i tude  f o r  the reference gravity-turn t ra jectory.  
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Figure 5.- Geometric re la t ionship  between vehicle  t h r u s t  a x i s  and the  uprange horizon. 



K U R  

Figure 6.- Variation of the angle between the  thrus t  vector and the l i n e  of sight t o  the  uprange horizon 

with a l t i t u d e  for the  reference gravity-turn t ra jectory.  
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Figure 7.- Geometric r e l a t i o n s h i p  between vehicle  t h r u s t  axis and t h e  nominal landing s i t e .  
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A l t i t u d e , h , f t  

Figure 8.- Variation of the angle between the  thrus t  vector and the  l i n e  of  sight t o  t h e  nominal landing point 
f o r  the reference gravity-turn t ra jectory.  



Altitude,h,ft 

Figure 9.- Variation of t h e  angle between the  t h r u s t  vector and t h e  b isec tor  of the  angle formed between the  l i n e s  
of s ight  t o  the  downrange horizon and the  nominal landing point  for  the  reference gravity-turn t ra jec tory .  
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Figure 10.- Geometric re la t ionship between the vehicle th rus t  axis and the l i n e  of sight t o  an orbi t ing spacecraft. 
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Figure 11.- Variation of the  angle between t h e  t h r u s t  vector and t h e  l i n e  of s ight  t o  the  orb i t ing  spacecraft 
for  t h e  reference gravity-turn t ra jec tory .  
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( a )  Variat ion of f l igh t -pa th  angle with a l t i t u d e .  
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(b) Variat ion of v e l o c i t y  with a l t i t u d e .  

Figure 12.- Comparison of c h a r a c t e r i s t i c s  of t h e  reference gravi ty- turn descent with those 
generated. by t h r u s t i n g  23' behind t h e  o r b i t i n g  spacecraf t .  



R a n g e , R , f t  

(a) Variat ion of a l t i t u d e  with range. 

Figure 12.- Concluded. 

( e )  Variat ion of a l t i t u d e  with time. 
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Figure 13.- Variation i n  terminal conditions w i t h  change i n  direct ion of thrust-vector a t t i tude  
Q = 25'. re la t ive  t o  the orbi t ing spacecraft. 
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Figure 14.- Variat ion of terminal  conditions with t h r u s t  l e v e l  when o r b i t i n g  spacecraf t  i s  used 
as thrus t -or ien ta t ion  reference.  % = 23'. 
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Figure 15.- Variation of terminal  conditions with i n i t i a l  a l t i t u d e  when o r b i t i n g  spacecraft i s  
used as thrus t -or ien ta t ion  reference. KS = 2 3 O .  
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Figure 16.- Variation of terminal conditions with initial rate of descent when orbiting spaceeaft 
is used as thrust-orientation reference. % = 23'. 
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Figure 17.- Variat ion of terminal  condi t ions with i n i t i a l  t a n g e n t i a l  ve loc i ty  when o r b i t i n g  
vehicle  i s  used as thrus t -or ien ta t ion  reference. % = 23'. 
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